If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-11w=40
We move all terms to the left:
2w^2-11w-(40)=0
a = 2; b = -11; c = -40;
Δ = b2-4ac
Δ = -112-4·2·(-40)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-21}{2*2}=\frac{-10}{4} =-2+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+21}{2*2}=\frac{32}{4} =8 $
| 2/5x+5/12=1/6x-5/6 | | 16=1/4c | | 144+14m=382 | | 31n-128=368 | | 13+2x=- | | 9(2x+1)=99 | | x2–17x–18=0 | | 2x+x+7+x=89 | | 10/6=3x/10 | | 6-2e=4 | | u2–11u+18=0 | | 4.47a=8.9847 | | 20x+12=-9 | | 25x+11=-6 | | 3t2+17t+10=0 | | 0=50x-16x^2+20 | | -1/5n=-36 | | i+1/2+i-3/3=4 | | i+1/2+1-3/3=4 | | 0=-16t^2+64t+32 | | 7=-x+14 | | 8a-7=4a9 | | 2x+5+x=250 | | x/12=22 | | 80,000(1/4)^t=33750 | | 32y=4 | | 33,750(4)^t=80,000 | | y+-7=14 | | 9x-4+3x-7=25 | | 33,750(4)^t=80000 | | (15b-1)-7(2b+4)=-6 | | -4+6=-3(x+5) |